Procleave_sequence webserver

Input the substrate sequence (example)

Please select the protease of interest from the dropdown menu to make the prediction: (help)

select all
pepsin A (A01.001)
cathepsin D (A01.009)
cathepsin E (A01.010)
rhizopuspepsin (A01.012)
aspergillopepsin I (A01.016)
necepsin-1 (A01.053)
HIV-1 retropepsin (A02.001)
cathepsin L (C01.032)
cathepsin S (C01.034)
cathepsin K (C01.036)
falcipain-2 (C01.046)
cathepsin B (C01.060)
falcipain-3 (C01.063)
cathepsin L3 ({Fasciola} sp.) (C01.129)
calpain-1 (C02.001)
calpain-2 (C02.002)
caspase-1 (C14.001)
caspase-3 (C14.003)
caspase-7 (C14.004)
caspase-6 (C14.005)
caspase-8 (C14.009)
matrix metallopeptidase-1 (M10.001)
matrix metallopeptidase-8 (M10.002)
matrix metallopeptidase-2 (M10.003)
matrix metallopeptidase-9 (M10.004)
matrix metallopeptidase-3 (M10.005)
matrix metallopeptidase-7 (M10.008)
matrix metallopeptidase-12 (M10.009)
matrix metallopeptidase-13 (M10.013)
membrane-type matrix metallopeptidase-1 (M10.014)
astacin (M12.001)
meprin alpha subunit (M12.002)
meprin beta subunit (M12.004)
LAST peptidase ({Limulus polyphemus}) (M12.032)
LAST_MAM peptidase (M12.033)
ADAMTS4 peptidase (M12.221)
insulysin (M16.002)
mitochondrial processing peptidase beta-subunit (M16.003)
chymotrypsin A (cattle-type) (S01.001)
granzyme B ({Homo sapiens}-type) (S01.010)
kallikrein-related peptidase 5 (S01.017)
elastase-2 (S01.131)
cathepsin G (S01.133)
granzyme A (S01.135)
granzyme B, rodent-type (S01.136)
thrombin (S01.217)
plasmin (S01.233)
kallikrein-related peptidase 4 (S01.251)
glutamyl peptidase I (S01.269)
lysyl peptidase (bacteria) (S01.280)
lactocepin I (S08.019)
kexin (S08.070)
furin (S08.071)
PCSK-1 peptidase (S08.072)
PCSK-2 peptidase (S08.073)
PCSK-4 peptidase (S08.074)
PCSK-6 peptidase (S08.075)
PCSK-5 peptidase (S08.076)
PCSK-7 peptidase (S08.077)
KPC2-type peptidase (S08.109)
lactocepin-3 (S08.116)
signal peptidase I (S26.001)
signalase (animal) 21 kDa component (S26.010)


If you find Procleave useful, please kindly cite our paper:

Li et al. "Procleave: a conditional random field approach that combines sequence and structural information significantly improves the prediction of protease substrate cleavage sites", Genomics Proteomics Bioinformatics, 2020 Feb;18(1):52-64. doi: 10.1016/j.gpb.2019.08.002.


Copyright © 2019. Biomedicine Discovery Institute and School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia